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Abstract. The performance potential of n-type implant free In0.25Ga0.75As MOSFETs with high-κ
dielectric is investigated using ensemble Monte Carlo device simulations. The implant free MOSFET
concept takes advantage of the high mobility in III-V materials to allow operation at very high speed and
low power. A 100 nm gate length implant free In0.25Ga0.75As MOSFET with a layer structure derived
from heterojunction transistors may deliver a drive current of 1800 A/m and transconductance up to
1342 mS/mm. This implant free transistor is then scaled in the both lateral and vertical dimensions to
gate lengths of 70 and 50 nm. The scaled devices exhibit continuous improvement in the drive current up
to 2600 A/m and 3259 A/m and transconductance of 2076 mS/mm and 3192 mS/mm, respectively. This
demonstrates the excellent scaling potential of the implant free MOSFET concept.

1. Introduction
Recent research into new device architectures and materials [1] has revived the idea to employ high
electron mobility III-V semiconductors in MOS devices [2]. The development of a suitable high-κ gate
dielectric for GaAs with an ’unpinned’ oxide/semiconductor interface [3] has given this notion a further
momentum. Monte Carlo (MC) device simulations of ion-implanted III-V MOSFETs have predicted
that In0.2Ga0.8As MOSFETs with 80 nm metallurgical gate length would outperform the equivalent Si
and strained Si devices [4, 5]. However, when the ion-implanted transistor based on the In0.2Ga0.8As
channel is scaled down to a metallurgical gate length of 35 nm the performance margin to the equivalent
Si based MOSFETs shrinks [4, 5]. Therefore, the introduction of III-V materials in MOSFETs requires
new device concepts which enjoy the benefit of scaling while maintaining a high electron mobility. One
of these recently proposed new concepts [6] is an enhancement mode MOSFET which does not require
implanted source/drain regions and extensions.

2. Implant free MOSFETs
Fig. 1 illustrates an implant free MOSFET based on an epitaxial layer structure derived from high
electron mobility transistors. The structure comprises a gate oxide, source and drain Ohmic contacts, and
a metal gate electrode with a high workfunction. The source-gate and gate-drain regions are normally
”on” and conducting under flatband conditions. The gate region is designed to be non-conducting at zero
gate voltage for normally ”off” operation.

In this work, we have studied the potential performance of an n-type implant free MOSFET with
an In0.25Ga0.75As channel, a 100 nm gate length and a high-κ gate dielectric, shown in Fig. 1, using
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and 6 show that the implant free In0.25Ga0.75As MOSFET can be effectively scaled down to achieve a
large performance improvement. It also becomes apparent from Figs. 5 and 6 that the difference between

Boltzmann and F-D statistics increases with increasing drain voltage and that F-D statistics give
a slightly larger drain current by approximately 12% (at VD = 0.3 V) for the 100 nm and 70 nm
gate lengths MOSFETs. In the case of the 50 nm gate length In0.25Ga0.75As MOSFET, the effect of
F-D statistics becomes negligible with only 5% difference between the drain current obtained using
Boltzmann statistics and F-D statistics.

The relatively smooth ID-VG characteristics allow the calculation of the intrinsic transconductance
at various applied drain voltages. The 100 nm implant free MOSFET exhibits a maximum intrinsic
transconductance of 1340 mS/mm. When the device is scaled to gate length of 70 nm and 50 nm, the
maximum intrinsic transconductance increases to 2080 mS/mm and 3190 mS/mm, respectively. The
continuous increase in the transconductance is another indicator that the implant free concepts is suitable
for further scaling into deep sub-100 nm dimensions.

Finally, Fig. 7 shows the average electron velocity along the In0.25Ga0.75As channel in scaled
implant free MOSFETs. This figure illustrates that electrons quickly gain a high velocity which peaks
at 4.8 × 105m/s (5.1 × 105m/s) in the 100 nm device when using Boltzmann statistics (using self-
consistent F-D statistics) and can further increase up to 5.4×105m/s (5.7×105m/s) and to 5.6×105m/s
(6.0×105m/s) with scaling of the gate length to 70 nm and 50 nm, respectively. However, the velocity
increase is slightly suppressed in the scaled devices because the improved non-equilibrium electron
transport is affected by enhanced scattering due to higher δ-doping concentrations.

3. Conclusions
A finite element heterostructure MC device simulator has been used to study the performance of implant
free InGaAs MOSFETs. We have demonstrated that a 100 nm gate length implant free MOSFET with an
In0.25Ga0.75As channel and a high-κ gate oxide exhibits a drive current of 1650 mA/mm and a maximum
transconductance of 1340 mS/mm. The MC device simulations employ a bulk MC transport model
verified against experimental data obtained for GaAs, AlGaAs and InGaAs [7] and were calibrated
against experimentally obtained ID-VD and ID-VG characteristics of various HEMTs [7]. The simulated
electron mobility and sheet density in the implant free In0.25Ga0.75As MOSFET were also verified against
measurements on relevant epitaxial layers [9].

The implant free MOSFET has a significant scaling potential. When properly scaled in both vertical
and lateral directions [7], the 70 nm gate length implant free In0.25Ga0.75As MOSFET can deliver
approximately 60% drain current increase and a maximum transconductance of 2080 mS/mm. When
the device is further scaled down to the 50 nm gate length, the drain current increases by approximately
90 − 100% compared to the drain current observed in the 100 nm implant free MOSFET while the
maximum transconductance reaches 3190 mS/mm.
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